|
dp1 (x) |
|
|
|
|
|
|
|
Siła
P=1 w przedziale <A;B>: |
|
|
EI0 d2y/dx2 = - M (x) |
|
M (x) = x/12,8 |
|
|
EI0 d2y/dx2 = - x/12,8 |
|
EI0 dy/dx = -1/2*(x2/12,8)+C = - x2/25,6 +C |
|
EI0 y = -1/3*(x3/25,6)+Cx+D = - x3/76,8 +Cx+D |
|
|
Warunki brzegowe: |
|
|
|
|
1. |
x=0 |
y=0 |
═> |
D=0 |
|
2. |
x=l=12,8 |
y=0 |
═> |
0= - 12,83/76,8 +C*12,8 |
C= |
2,1333333 |
|
|
|
d1p (x) = y = 1/ EI0 (-x3/76,8 + 2,1333x) |
|
|
|
Siła
P=1 w przedziale <B;C>: |
|
|
1,2EI0 d2y/dx2 = - M (x) |
|
M (x) = 1- x/12,8 |
|
|
1,2EI0 d2y/dx2 = x/12,8 - 1 |
|
1,2EI0 dy/dx = 1/2*(x2/12,8)-x+C = x2/25,6 -x+C |
|
1,2EI0 y = 1/3*(x3/25,6)-1/2x2+Cx+D = x3/76,8 - x2/2+Cx+D |
|
|
|
|
Warunki brzegowe: |
|
|
|
|
1. |
x=0 |
y=0 |
═> |
D=0 |
|
2. |
x=l=12,8 |
y=0 |
═> |
0=12,83/76,8–12,82/2+C*12,8 |
C= |
4,266667 |
|
|
1,2EI0 y = x3/76,8 - x2/2+4,26667x |
/ (1,2) |
|
|
|
d1p (x) = y = 1/ EI0 (x3/92,16 - x2/2,4+3,5556x) |
|
|
|
|
Siła
P=1 w przedziale <C;D>: |
|
|
M (x) = 0 |
═> |
d1p (x) = y = 0 |
|
|
|
|
|
|
|
|
|
|
|